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Mathematical modelling in applied analysis refers to exploiting mathematical
knowledge about �classes of basic� equations with the aim to describe and analyse
phenomena that appear in the natural and technical sciences
 As an example we
will show that low dimensional models can be derived for phenomena that appear
in �perturbations of� dynamical Poisson systems with symmetries
 We show that
the speci�c Poisson structure makes it possible to de�ne a manifold of relative
equilibria
 This manifold	 consisting of solutions of the unperturbed equation	
is used as a model manifold into which evolutions of perturbed equations can
be projected
 It turns out that for small perturbations that can have a large
e�ect on the time� and space scales we are interested in	 Fredholm solvability
conditions determine the projection and hence the �nal model
 We illustrate the
ideas to two spatially inhomogeneous systems from �uid dynamics� distorting
waves over uneven bottom and swirling �ows in expanding pipes
 More details
about these and other problems can be found in ��	 ��


�� General outline� perturbation theory on model manifold

Consider quite generally an in�nite dimensional evolution equation �a partial
di�erential equation in the applications� written like

E��u� � �tu�K�u� � �

where u is the state variable� and K the vector �eld	 We assume that for this
unperturbed system a smooth manifold of exact solutions is known
 with p the
parameters characterising the solutions� we get a parameterised manifold of
solutions that will be used as the model�manifold in the following�

M � fU�p� j p � Rsg�

An immediate consequence is that the evolution operator is degenerate on M�
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Stated di�erently� the tangent space to M consists of solutions �U��p of the
linearized equation E �

�
�u�� � �t��K

��u�� � �� whereK � is the linearised vector
�eld	
Now consider a perturbation of the system� described by

E��u� � �tu�K��u� � ��

whereK� is a small perturbation� measured by the quantity �� roughlyK��K �
O���	
The aim is to see the relevance of the original invariant manifold M for the
perturbed equation	 More speci�cally� we will look for approximate solutions of
the perturbed system as quasi�homogeneous� or quasi�static evolutions in M�
trajectories in M

t �� �u�t� � U�p�t���

determined by the parameter evolution t �� p�t�� for which the error � � u� �u
is small� � � O���	 On time and space intervals on which the e�ect of the
perturbation on the total solution is large �of order one� this means that we
look for approximations that are uniformly valid	
A straight forward error analysis � � E���u� �� � E���u� � E

�

�
��u��� h�o�t� leads

to the investigation of the linearized equation�

E �
�
��u�� � �E���u��

Here E���u� is recognized as the residue of the approximation	 Since � is small�
this residue will be of the same order� E���u� � O���	
Observe that if the unperturbed linearised operator would be boundedly invert�
ible� it would follow immediately that � is of the required order	 But the degen�
eracy of E �

�
��u� leads to speci�c conditions	 Indeed� from E���u� � range�E �

�
��u��

it follows that necessarily the following orthogonality conditions have to be
satis�ed�

E���u� � ker�E �
�
��u���

where the kernel of the adjoint linearized equation appears� E �
�
��u��	 � ��t	 �

K ����u�	 � �	 These conditions are necessary� and also su�cient if the linearized
operator is a Fredholm operator	 In the applications� the operator is indeed of
Fredholm type of order zero� and the number of orthogonality conditions �the
dimension of the kernel of the adjoint� equals the dimension of the kernel of
the linearised operator	 We will refer to the conditions as Fredholm solvability

conditions	
The Fredholm solvability conditions provide s � dim�ker�E �

�
��u���� conditions

for the evolution of the s parameters p
 hence these conditions determine in
principle the parameter dynamics t �� p�t� � Rs � and therefore the approximate
evolution in M	
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���� Applicability

To be applicable in problems from mathematical physics� the general outline
sketched above rests on two basic assumptions� the possibility to �nd a model
manifold of exact solutions of the unperturbed system� and the possibility to
characterize the solutions of the adjoint linearised equation in order to trans�
form the solvability conditions into explicit equations for the parameter dy�
namics	 It seems that at this stage of development� there are two classes of
equations for which both assumptions can be satis�ed	
One class are gradient�type of systems for which the manifold consists of equi�
librium solutions that depend on several parameters� and for which the kernel of
the adjoint linearised equation coincides with that of the linearised equation�
the latter being known from the degeneracy	 Typical examples are pattern
formation equations� which have phase�di�usion equations as the determining
parameter dynamics
 also systems for which the Nonlinear Schr�odinger equa�
tion for the amplitude appears as solvability condition can be phrased in the
general outline above	
A second class of systems are those with a Poisson structure and additional
symmetries	 In the past years we have shown that various examples can be
studied in this way
 the model manifold M is naturally found as the manifold

of relative equilibria� and the adjoint kernel can be characterised explicitly	 In
the next section we brie�y describe these aspects	

�� Poisson systems with symmetry

The evolution equation of a system with Poisson structure reads

E��u� � �tu� �
H�u� � �

where H is a functional� the Hamiltonian �which is in many applications the
energy of the system�� 
H�u� denotes its variational derivative� and � � ��u�
is a �structure map�� i	e	 a skew symmetric operator such that f F�G g�u� ��
h
F �u���
G�u�i is a Poisson bracket �satis�es Jacobi�s condition�	 �If � is non�
degenerate� the system is Hamiltonian
 in several interesting problems the map
is degenerate�	 We will denote the Hamiltonian �ow by u�t� � �H

t �u�� for the
solution with initial condition u�	 For such systems� the Hamiltonian �energy�
is a constant of the motion ��rst integral�� H��H

t �u��� � H�u��� for all t�
Special solutions� equilibria� time�independent solutions� are found as critical
points of the Hamiltonian� �u � Crit f H�u� j u � U g � for which 
H��u� � �
 in
many applications the energy�minimizers are relevant� but are non�degenerate
and cannot be used as a model manifold	 However� when an additional symme�
try� or degeneracy is present� there are other solutions that will form a model
manifold	
Suppose that� except H � there is an additional �rst integral I 	 A particular
case may be a Casimir functional C which satis�es fC�Fg � � for all F � i	e	
for which �
C � �
 these Casimir functionals can appear only in degenerate
Poisson systems	 The �ow of an integral I � �I � is a continuous symmetry
 it is
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trivial for Casimirs functionals	 �For simplicity of exposition we describe in this
section the case of one additional integral
 the extension to more integrals is
rather straightforward� in particular when the symmetry �ows mutually com�
mute	�
In a natural way� for Poisson systems with symmetry one can de�ne a man�

ifold of relative equilibria MRE along the following lines	 Relative equilibria
RE are found from a Constrained Energy Principle� prescribing the value of
the additional integral� critical points �minimizers to guarantee some stability
properties� of the energy on the level set

U��� � Min f H�u� j I�u� � � g � 
H�U� � �
I�U�

are for each � degenerate by the I��ow �when nontrivial�	 Taking the action of
the �ow �parameterised by 
� and the value of the constraint as parameters�
one obtains the MRE as the set

M � fU��� 
� � �I
�U��� j �� 
g�

This MRE consists of dynamic evolutions� the so�called relative equilibrium so�

lutions� which are simply evolutions along the group orbit� �I
�t�U��� 
��� �

U��� 
������t�
 the speed � is precisely the Lagrange multiplier that appears
in the equation for the constrained critical point	
Taking this set M as the model manifold� the general theory predicts the de�
generacy� which consists of an expected degeneracy along the symmetry �ow
�
I�U�� but also of a degeneracy perpendicular to the level set of I � given by
�U���	
The elements from the kernel of the adjoint linearised equation are more di��
cult to �nd	 It is known� see e	g	 Lax� ���� that the variational derivative of an
integral� 
I�u�� evolves with the adjoint �ow	 In general� the following results
holds for any Poisson system	

Kernel theorem �����
For the Poisson system it holds that

�E �
�
�u���u��� � E �

�
�u���u�
 consequently�

ker�E �
�
�u��� � ���u���

pseudo ker�E
�

�
�u���

where the inverse ��u���

pseudo has to be interpreted as a pseudo�inverse in case

there are Casimir functionals�

This brief description shows that for Poisson systems with symmetry both
assumptions for the applicability of the general ideas can be met in a natural
way	

�� Applications

We have applied the above ideas to Poisson systems with various kinds of per�
turbations	 Systems with small dissipation concerned surface waves and plane
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�ows� the decay of soliton�like solutions in the perturbed Korteweg � de Vries
equation� the self�organization in plane �ows and the viscous decay of vortices
in the Navier � Stokes equation	
In this contribution we describe two systems with spatial inhomogeneity
 an�
other example� the particle model for Bloch boundaries in inhomogeneous ferro�
magnetic material� is described in ���	
For these inhomogeneous systems the perturbed equation is a Poisson system
itself
 the inhomogeneity is characterized by a function� say � � ��x�� which
is the depth h�x� in the wave problem� and the radius of the pipe R�z� in
the swirling �ow problem	 The model manifold now consists of the union of
manifolds of relative equilibria of the homogeneous problems for which � is a
constant
 this introduces an additional parameter	 We will not go into details
but restrict ourselves to describe some of the results in the next subsections	

���� Waves above topography

In a good approximation� gravity driven surface waves on a layer of �uid above
a horizontal bottom are described by the Korteweg � de Vries equation	 This
equation has a Hamiltonan structure� with the energy as Hamiltonian	 Their
are many symmetries� actually in�nitely many since KdV is completely inte�
grable	 The one of interest here is translation for which the horizontal momen�
tum is the corresponding constant of the motion	 The relative equilibria are
in this case the solitary wave �shapes�� the solitons� that can be characterized
variationally like

U�h
 �� 
� � Min f Energy j Hor	 momentum � � g �

Here h is the depth and 
 denotes the �position� of the wave
 the amplitude
of the wave is related in a one to one way with the value �	 A translation with
speed � �depending on �� is the actual travelling wave	
For each depth h� the solitary waves determine a two�dimensional manifold

more dimensional MRE�s can be obtained by prescribing more integrals� for
instance the manifold of two�solitons	
The description of waves above a varying bottom is more involved
 when the
topography changes on a scale larger then the e�ective wavelength of the waves�
a modi�cation of the KdV�equation is valid �see �
� ���	 This modi�cation is still
a Hamiltonian system
 the coe�cients depend on the depth function h�x�	 Since
translation symmetry is lost� the horizontal momentum is not a �rst integral
anymore� and a solitary wave will deform	 With Pudjaprasetya we studied this
deformation in detail	 In particular for a wave running into shallower water� the
results are interesting	 In the literature the common approach is to take some
simple model for the change of the wave form during the running up� and then
study the �ssion of the deformed� single� wave on the new �smaller� depth using
inverse scattering theory for KdV	 Depending on the change in depth� two or
more solitary waves emerge� as is well known for KdV on a horizontal bottom	
We have described the process of running up in a di�erent way by using the
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quasi�homogeneous approximation in the manifold of two�solitons �or� almost as
accurate� as the simple superposition of two single solitary waves�� and deriving
the parameter dynamics from the solvability conditions	 The results turn out to
be in good agreement with numerical calculations that were performed to verify
this analytical approximation �����	 In Figure � the results of these numerical
calculations by Van Daalen are shown
 for the change in depth considered� the
splitting of the solitary wave in two solitary waves �and a small tail� is clearly
visible	 �Actually� for the numerical calculations� the complete set of surface
wave equations is used instead of the KdV�approximation
 the results agree
remarkably well	�
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Figure �	 At the left� several wave pro�les �shifted vertically for increasing
time� show the splitting process
 the grey band indicates the area of decrease
in depth	 At the right the elevation of the waves is indicated by grey scales	

���� Swirling 	ow in expanding pipes

To support the design of industrial burners �for instance to reduce the pro�
duction of noxious pollutants�� a detailed knowledge of the �ow is required	
The main interest� and least understood aspect� concerns the appearance of
recirculation areas in swirling �ows	 This problem is related to the problem of
vortex breakdown in swirling �ows without boundaries	
Assuming the �ow to be inviscid and incompressible� the governing equations
are the three dimensional Euler equations of �uid dynamics	 Restricting to
�ows in circularly symmetric pipes� rotation symmetry can be invoked	 The
Euler equations are a Poisson system� with the kinetic energy as Hamiltonian	
An important Casimir functional is the helicity� a quantity that measures the
knottedness of streamlines	 The axial �ux is another �rst integral� with axial
translation as its �ow	 In a cylindrical pipe with constant radius� several dis�
crete manifolds of relative equilibria can be found	 These relative equilibria�
called critical swirling �ows� are the variants of the solitons in the wave problem
above
 they are the constrained critical points of the energy�

Crit f Energy j Helicity � b� Axial �ux � f g �
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�Here the functionals are integrals over a cross section of the pipe	� Among the
relative equilibria� which can be given explicitly in terms of Bessel functions�
two main families of solutions can be distinguished
 the axial and angular
velocity pro�les �uniform in the angular and axial direction� of these primary
�ows are shown in Figure  	

Figure �	 For given helicity and axial �ux� shown are the axial and angu�
lar velocity pro�les of the co�rotating primary �ow �at the left� and of the
counter�rotating primary �ow �at the right�	

In an expanding pipe� the axial translation symmetry is lost and the �ows
will deform	 Using a quasi�homogeneous approximation we studied� with Van
de Fliert and Fledderus� the development of the �ow
 from the solvability
conditions the change in the values of the constraints as a function of the
changing radius was determined ��!�
 see also � ��	 Stated di�erently� the �ows
are found as solutions of the Bragg�Hawthorn equation� where the functions
that appear in this equation� the head and circulation� change in a speci�ed
way with changing pipe radius	
The results show that a characteristic di�erence can be observed for the two
primary �ows� the co�rotating �ow �for which b�z� helicity times axial vorticity
component� is positive� develops a recirculation area near the wall of the pipe�
while the counter�rotating �ow �for which b�z � �� develops a recirculation
near the axis	 The latter result agrees quite well with experimental �ndings
�performed at Mechanical Engineering� UT� �����
 the recirculation areas near
the wall may correspond to �ows that loose their stability �separation of the
boundary layer�
 further research by Fledderus� in progress� concerns stability
investigations for the various critical �ows� the matching of the Eulerian �ows
to a viscid boundary layer and a detailed comparison with experimental data	
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Figure �	 Appearance of a recirculation area near the axis in an expanding
pipe as calculated in the quasi�homogeneous approximation in the family of
the counter�rotating primary �ows	 An artistic impression of the recirculation
area� with the trajectory of a single particle� is shown at the right	
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